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LETTER TO THE EDITOR 

Test of universality for Ising-correlated site percolation 

Naeem Jan? and Dietrich StaufferS 
Center for Polymer Studies$, Boston University, Boston MA 02215, USA 

Received 31 August 1982 

Abstract. A universal amplitude ratio was determined from cluster numbers in the Ising 
model at twice the critical temperature. Our Monte Carlo data agree with those for 
random percolation (infinite temperature), in agreement with expectations from renormali- 
sation group arguments, but in disagreement with earlier Monte Carlo simulations of Stoll 
and Domb on much smaller systems. 

Universality of critical amplitudes at second-order phase transitions (Betts er a1 197 1) 
connects various quantities in different models or materials. Roughly speaking, if we 
form a dimensionless combination of quantities (each of which is not dimensionless), 
and if this combination approaches a finite non-zero limit at the critical point (though 
each of the original quantities diverges or vanishes there), then usually this combination 
is the same for all different materials or models which fall within the same universality 
class. For example, one may look at the ratio of susceptibilities at a small distance 
from the critical temperature T,, with one susceptibility measured above T, and the 
other below T,, at the same distance from T,. Each of these susceptibilities diverges 
at the critical point, but their ratio R approaches a finite limit according to scaling 
theory. Universality then says that this ratio, R, approaches the same limit for all 
similar magnets, for example for all ferromagnetic king models in three dimensions. 

For percolation (see Stauffer 1979, Essam 1980 or Adler et a1 1982 for reviews) 
an analogous universality statement (Marro 1976) asserts that the ratio of the second 
moment of the cluster size distribution (often called the ratio of mean cluster sizes) 
approaches the same limit for different lattices of the same dimensionality, provided 
the two second moments are taken at the same distance from the percolation threshold 
p c .  A theoretical foundation for universality in percolation theory was given by 
Aharony (1980). Somewhat related is the ratio of the number of s-clusters at p c  to 
the number of s-clusters at that concentration pmax(s) where the number of s-clusters 
has a maximum as a function of concentration p ,  at fixed s. We call the first ratio the 
‘susceptibility ratio’ and the second one the ‘cluster number ratio’. 

Both ratios have become of practical importance recently: Herrmann et a1 (1982) 
found from the susceptibility ratio that a kinetic gelation process does not belong in 
the same universality class as random percolation, even though the critical exponents 
were indistinguishable. Also, Djordjevic et u1 (1982) used the assumed universality 
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of the cluster number ratio to determine very accurately the percolation threshold in 
the square and honeycomb lattices. On the other hand, Gawlinski and Stanley (1981) 
found deviations in the susceptibility ratio when they compared their results for 
continuum percolation with those of lattice percolation (Hoshen et a1 1979). Thus a 
more careful investigation of these ratios is appropriate. 

Our work was motivated particularly by the earlier study of Stoll and Domb (1979) 
who looked, among many other properties, at the cluster number ratio in random 
percolation on the square lattice, as well as for interacting percolation in the Ising 
ferromagnet at T = 2Tc. At infinite temperature (random percolation) they found a 
cluster number ratio of 5.4, whereas at T = 2 T c  this ratio was only 4.0. (Series 
expansions give 4.95h0.15 (Djordjevic et a1 1982), and Monte Carlo simulations of 
35 000 x 35 000 triangular lattices give 5.0kO.l (Margolina 1982).) Thus universality 
seems not to hold in this case. On the other hand, renormalisation group arguments 
(Klein et a1 1978; for a review see Stauffer eta1 1982) indicate that all Ising-correlated 
percolation models should fall into the same universality class as random percolation, 
as long as the magnetic correlation length remains finite (i.e. away from the Curie 
point). The Monte Carlo work of Stoll and Domb (1979) was based on rather small 
lattices (110 x 110), and these authors had already pointed out that this system size 
may not have been sufficient. For two-dimensional percolation the boundary effects 
are particularly important since the connectivity exponent v = 4 is unusually large, 
causing the connectivity length to diverge more strongly than the magnetic correlation 
length in Ising models (v = 1). Suspecting that finite-size effects were responsible for 
the deviation in the cluster number ratio, we therefore repeated the experiment of 
Stoll and Domb with much larger lattices. 

Standard Monte Carlo techniques (multi-spin coding followed by multi-label cluster 
characterisation; see Stauffer (1982) for a review) were used to count clusters in 
thermal equilibrium of an king square lattice at T = 2Tc, for 400 x 400 and 800 x 800 
lattices. Periodic boundary conditions were used for the magnetic interactions but 
not for the cluster counts (Herrmann and Stauffer 1980). 

Following Stoll and Domb, we plotted the fraction of spins in the infinite cluster, 
and the second moment of the cluster size distribution Z s 2 n , ,  as a function of 
concentration ( p  = $ +i x magnetisation) by varying the magnetic field in the kinetic 
Glauber model. Since the critical exponents p and y are believed to be known exactly 
(A and %, respectively), we plotted the strength of the infinite cluster and the mean 
cluster size raised to the power 1/p and - l / y ,  respectively. Then we determined 
the effective critical points by extrapolating these quantities to zero visually. We 
found p c  to be 0.562 and 0.555 for the 400 X 400 and 800 x 800 lattice, respectively. 
With the same method Stoll and Domb had p,=O.569 for their 11Ox 110 lattice, 
Extrapolating these estimates to infinite system size, we find 

pc(T/Tc) = 0.55 

corresponding to a magnetic field @H/k,T = 0.033, 
A direct determination of the cluster number ratio indicates that this ratio decreases 

systematically with increasing cluster size s and that its asymptotic limit seems to be 
below 5, as found by Stoll and Domb. However, we regard this effect as spurious 
and due to the finite size even for our systems. For random percolation, the numbers 
of large clusters simulated in a finite lattice right at p = p c  are known to be enhanced 
by boundary effects (Hoshen et a1 1979, Margolina 1982 as cited in Stauffer 1982), 
even for 4000 x 4000 and 35 000 x 35 000 lattices. We reproduced this effect by a 
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simple 800 x 800 simulation of random triangular site percolation: data at p = p c  
deviate from the asymptotic behaviour for cluster sizes larger than lo2. For Ising- 
correlated percolation, figure 1 shows clearly the finite-size effects at p = p c  (lower 
part of the figure). Asymptotically one expects (Stauffer 1979, Essam 1980) for the 
number (per lattice site) of s-clusters: n, cc s-‘ with T = 2 + 1/S = 2 + p / ( p  + y )  = %, 
For our larger system size, the data of figure 1 exhibit a plateau in s ‘ns versus s ; and 
we take this plateau value s‘n, = 0.032 fO.001 as the asymptotic limit at p c ,  
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Figure 1. Log-log plot of the scaled cluster numbers versus cluster size. The upper part 
refers to data at pmax where the cluster numbers n, have a maximum as a function of p ;  
the lower part refers to the effective percolation threshold p c  = 0.555 or p H / k , T  = 0.034. 
The straight lines indicate the asymptotic value determined from this plot; their distance 
corresponds to the cluster number ratio 5.1. The dots are for 800 x 800 lattices, with the 
two largest statistical error bars shown, the crosses refer to 400 x 400 (less precision). 
One sees that finite-size effects are more disturbing at p c  than at pmax. 

For the cluster numbers at their maximum below p c ,  this finite-size effect is seen 
from figure 1 (upper part) to be much lower; we extrapolate s7ns(pmax(s)) to 0.1635f 
0.002. Then the ratio between these two extrapolations gives the cluster number ratio 
as 5.1 f 0.2, compatible with the ratio 5.0 in random percolation and appreciably 
higher than the estimate 4.0 of Stoll and Domb. 

For the susceptibility ratio, figure 2 shows for the effective p , = O . 5 5 5  of the 
800 x 800 system the variation of the second moments E s2ns  (excluding the largest 
cluster) with distance from the percolation threshold. The differences between the 
400 x 400 data and the 800 x 800 data indicate that only concentrations rather far 
away from the percolation threshold should be relied upon. These data agree surpris- 
ingly well with the expected susceptibility exponent y = % and give a susceptibility 
ratio of 200, in excellent agreement (though it may be accidental due to large distances 
from p , )  with the susceptibility ratio of random percolation. 

We also investigated at the threshold the variation with system size of the second 
moment and of the strength of the largest cluster. These two quantities should vary 
for L X L systems as L-”” and Ly/” .  We cannot reliably determine p/v -0.15, but 
y / v  = 1.72 agrees reasonably with 2 = 1.79 as predicted for random percolation. Thus 
again universality is confirmed; but with respect to exponents that conclusion was 
already drawn by Stoll and Domb (1979). 
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Figure 2. Log-log plot of the second moment of the cluster size distribution versus distance 
from the effective critical point p , = O . 5 5 5 .  The dots refer to 800x800, the crosses to 
400 x 400 lattices. The two parallel straight lines have the theoretically predicted slope 
$; their distance corresponds to a susceptibility ratio of 200. Note the large distance 
from the percolation threshold needed to get reliable data. 

In summary, our results confirm that the cluster number ratio and the susceptibility 
ratio for this correlated percolation problem have the same ‘universal’ values as 
random percolation, in agreement with earlier predictions from the renormalisation 
group. We have also found that rather strong size effects are responsible for the too 
small value found by Stoll and Domb for the cluster number ratio. 

We thank A Coniglio for suggesting this work, A Margolina for advance information 
on her Monte Carlo simulations for very large lattices, H Nakanishi for warning us 
to be careful with susceptibility ratios, and the Center for Polymer Studies for the 
hospitality extended to us. 
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